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There i s  a continued need t o  protect  high-temperature aerospace 
materials from oxidation and atmospheric contamination. 
need, the Lewis Research Center of NASA is  current ly  supporting a 
number of programs to protect  nickel and cobalt  based superalloys, 
dispersion strengthened materials, chromium al loys,  and columbiwn 
and tantalum ~CLloys. Applications range fpom a i r c r a f t  gas turbine 
engine blades and vanes requiging more than 3000 hours protect ion a t  
temperatures approaching 2000 F, to l i f t  engine par t s ,  advanced eng- 
i n e  components, agd space s h u t t l e  ChemaJ protect ion systems which 
operate near 2200 Some of 
t h e  contractual  and in-house research efforts directed toward these 
problems are presented i n  the  following sections.  

To meet t h i s  

F and above but  fo r  much shorter  times, 

Aircraft gas turbine vanes3 even though air cooled, of ten ex- 
perience hot  spot temperatures o f  2000' F o r  more, 
a r a t i o n a l  basis to improve coatings f o r  vane materials, an e f f o r t  
was made to evaluate the  protect ion a b i l i t y  of vendor-applied alum- 
in ide  coatings when exposed to an environment of" simulated engine 
combustion products (Ref, 1.). The object ives  of  t he  program were to 
obtain data on t h e  chmle t ry ,  structUre, and life of se lec ted  corn- 
mercfal coatings on %he nickel-base a l loys  I N - 1 0 0  and B-1900, and on 

I n  order t o  do t h i s ,  8 
mal fa t igue  paddle specimens) were exposed t o  Mach 0.7> JP-5 com- 
bustion products using l hour epo8:ures at maximum measured tempera- 
t u r e s  of" between 1845 and 2050 F, Exposures were followed by air  
b l a s t  quenching. CaxefLzl temperature ealibraxion showed t h e  m a x i -  
mum temperature to exist on only 8 -very s m a l l  area o f  the specimen 
t r a i l i n g  e ~ e  - t h e  l e a a n g  edge was g e n e r d l y  approxinately 300' F 
Cooler the specimens were tested t o  8 given weight loss ,  
failllre temined *om 8, metallographic chordwise cross sect ion 
through the  hot zonee The loca t ion  of t h e  first point where t h e  
almini.de coating layer  began t o  break up i n t o  i s lands  was used w i t h  
t h e  temperature ca l ibra t ion  t o  establish the  temperature at  which 
first f a i l u r e  occurred, Thus, a time-faihre temperature data point 
was established. 

I n  order t o  form 

the cobalt-base ;ZP~OYS -52 and X-40 8,s B function of temperature. 
laked air f o i l  specimens (Misco-type ther- 
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This progrm showed tha t  some commercial coatings do o f f e r  
better protect ion than others  i n  the tests employed. 
above f a i l u r e  c r i t e r i a ,  t h e  begt coating on a nickel-base a l loy  had 
a 3000-hour l i f e  a t  about 18?0 F: the best Eoating on a cobalt  a l l oy  
had a projected 3000-hour L i f e  a t  about 1800 F. 
aluminum content and minor s i l i c o n  additions appeared t o  improve per- 
formance i n  coatings on niekel-base alloys: while high aluminum con- 
t e n t  and carbide layer  formation beneath t h e  coating were f ac to r s  i n  
improving coatings f o r  cobalt  a l loys.  

Based on t h e  

Both increased 

8imulated engine environment tests are  SO being car r ied  on at 
N M A P s  Lewis Research Center, 
reference 1 has: been s imi la r ly  tested i n  t h e  NASA natura l  gas fueled 
Mach I burner r ig s ,  however. 
bars of  vendor aluminide coat8d FJH-52 were t e s t e d  at  surface tempera- 
t u re s  of  1900, 2000, and 2100 F. Here, time t o  first v i sua l  fail-  
ure, ra ther  than a metallographic aluminide break-up c r i t e r i a ,  was 
used t o  es tab l i sh  coating l i f e .  
somewhat pas t  t h i s  visual f a i l u r e ,  Thus, metallographic examination 
of such specimens, a l l  having a l a rge  hot zone, showed considerable 
aluminide layer  breakup. While the log l i f e  against  temperature re- 
l a t i o n  determined by (Ref .  2) was followed by the reference 1 
metallographic data, t h e  f a i l u r e  criteria were s igni f icant ly  differ- 
en t ,  
data a l s o  based on time t o  first v i sua l  f a i l u r e  are added f o r  com- 
parison, 
longer lives a t  a11 temperatures, 
exposures followed by a i r  blast quenching, other  fac tors  appear t o  
have produced these as ye% unresolved differences.  Possible fac tors  
t ha t  could be involved, aside from differences i n  gas veloci3ies  and 
combustion products, are hot zone s i z e  (30  cm 
Ref, 1) and specimen geometry. 

Qnly one of  t he  systems t e s t e d  i n  

Standard wedge-shaped NASA erosion 

Testing was generally continued 

The IW3A data are presented i n  f igure  1 and reported reference 1 

Note tha t  on t h i s  basis t h e  reference 1. data show much 
Since both tests used one-hour 

a t  NASA, 2 cm i n  

While the test  r e s u l t s  above d i f f e red  s igni f icant ly  i n  time t o  
f a i lu re ,  r e s u l t s  fYom these programs have shown that  ce r t a in  problems 
arise when alwninide’coatings are used at  high operating temperatures. 
One such fac tor  i s  t h e  development of  l a rge  a3uminide grains  whose 
boundaries are perpendicular t o  t h e  specimen surfacec These bound- 
aries become depleted i n  aluminum and serve as short  c i r c u i t  paths 
fo r  oxidation at tack.  To eliminate t h i s  problem, a contractual  pro- 
gram i s  exploring t h e  e f f e c t s  of  incorporating f i n e  aluminum oxide 
p a r t i c l e s  o r  f i n e  chromium metai p a r t i c l e s  i n t o  an aluminide pack 
coating (Ref. 3). The i n t e n t  o f  these ad f i t i ons  was t o  r e f ine  the  
grain s t ruc tu re  of t h e  aluminide coatings and t o  e l b i n a t e  the detri- 
mental perpen&culm grain boundaries, 3Kceliminary metallographic 
evidence shows t h a t  some s t r u c t u r a l  modification has been achieved. 
F l m e  tunnel  and burner r i g  tests at 2000’ F show t h a t  coatings 
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modified with e i the r  o r  both of these additions perform s ign i f i -  
cantly better than unmod&fied coatings, 
burner r i g  tests at 2000 
of 260 hours while those with the  very f ine  alumina o r  chromium 
additions survived fo r  more than 550 hours. 
of improved versions of these systems are continuing, 

For example, i n  Mach 0.5 
FP unmodified coatings exhibited a l i f e  

Evaluation and t e s t i n g  

A t  NASA Lewis, supporting e f f o r t s  on in-house deposited alumin- 
ide coatings a re  exploring the  e f f ec t s  of  pack additions, act ivators ,  
time, and temperature on coating microshructure, chemistry, and 
oxidation protection, 
house and commercial aluminide coating l i f e  i s  being compared t o  
Mach 1 burner r i g ' t e s t  r e su l t s .  A t  t h i s  ear ly  stage i n  the  program, 
it appears t h a t  f o r  some systems a t  least, t h e  l e s s  expensive cycl ic  
furnace oxidation t e s t s  can provide considerable insight  i n t o  burner 
r i g  behavior (Ref, 2 ) ,  

The e f fec t  of cycl ic  furnace t e s t ing  on in- 

Research on the  e f fec t  of thermal cycling on spal la t ion of 
aluminum oxide sca le  i s  being conducted on bulk nickel aluminide 
specimens. Early r e s u l t s  show t h a t  several  elements improve scale  
adherence during cycl ic  furnace oxidation tes t ing .  Finally,  i m -  
proved ana ly t ica l  techniques a re  being sought so t h a t  alunini.de 
coatings can be characterized on a quant i ta t ive basis and so t ha t  
compositional changes can be better followed during oxidation t e s t -  
ing, Results t o  date, have indicated t h a t  t he  use of an ion bean 
mass spectrometer probe can be very useful  i n  the  qua l i ta t ive  depth- 
wise detection of expected and unexpected elements without sectioning 
the  specimen. 
such as f luorine t h a t  are  present at  concentrations beyond t h e  
lower limits of microprobe detection. I n  the  same study, as would be 
anticipated,  t he  electron microprobe offered u s e h l  microsOructura1 
analysis  but it i s  c lear  t h a t  better methods and procedures are s t i l l  
needed t o  convert t h e  raw instrument data in to  quant i ta t ive analytiwd- 
information e 

This device i s  a l so  capable of detecting l i g h t  elements 

Aside from aluminide coatings, other approaches are being support- 
ed t o  provide oxidation protection f o r  superetlloys. 
being explored as a means of coating the high strength nickel  super- 

Metalliding is 

-mW ?I33 with duplex l aye r s  o f  Mn, Cr, Y, Ta, a n q o r  Zr 
Alloy coatings of Co-Cr-Al-Y are being applied by physical 

Currently, nei ther  program has progressed vapor deposition (Ref .  5) e 

su f f i c i en t ly  t o  es tab l i sh  system potent ia l .  
eladding s tudies  have been underway fo r  some time t o  uni te  weak but 
b$G$L%pxidation r e s i s t an t  N i - C r ,  Mi-Cr-Al, and Fe-Cr-Al-Y al loys 
with stronger but less oxidation r e s i s t an t  superalloys such as IN-100 

several  very promising combinations 
cladding protected 'frrTI-52 f o r  considerably longer than a commercial 

A t  NASA-Lewis, however, 

-52 (Ref .  6 ) ,  Cyclic furnace oxidation tests have shown 
A f ive  m i l  Fe-25Cr-4Al-0.6~ 
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aluminide coating as shown i n  f igure  2 (Ref. 2 ) .  
cyc l ic  exposure conditions, the cladding lasted nearly 400 hours 
while t h e  coating took only around 30 hours t o  exhibit a net  loss  
i n  weight ., 

Under 1 hour 

To explore a l t e rna te  methods of deposit ing both a l loy  claddings 
and highly modified aluminide coatings , slurry/s inter  and s lurry/  
sinter/aluminide processes are under development a t  Lewis f o r  both 
n icke l  and cobalt  based materials. 
t h e  N i - C r - A l  systems have been deposited and t e s t i n g  efforts con- 
t i nue  i n  t h i s  area. 

Several promising systems i n  

COATINGS FOR DISPERSION STRENGTHEXED NICKEL AND N i C r  ALLOY 

Presently, one o r  two contractual  programs are being considered 
t o  develop d i f fus ion- res i s tan t  pro tec t ive  coatings fo r  t h o r i a  dis- 
persion strengthened n icke l  and nickel-chromium materials. 
materials are of  i n t e r e s t  fo r  advanced aircraft gas turbine applica- 
t i ons  at  temperatures t o  about 2200' Fo 
primari ly  directed towards studying the oxidation behavior of the 
unprotected materials under a va r i e ty  of environmental conditions 
(Ref  7) e 
l o s ses  detected s n  TD-NiCr i n  cyc l i c  furnace tests, weight l o s ses  
of  over 40 mg/cm occgr i n  100 hours of Mach 1 burner r i g  t e s t i n g  
(1 h r  cycles) a t  2000 F (Ref. 8). 
mising oxidation r e s i s t a n t  a l loys  (Ref, 9) have been applied t o  NASA 
burner r i g  specimens o f  TD-NiCr  and are awaiting the i r  scheduled 
t e s t ing ,  Figure 3 shows a comparison of  the  weight change behavior 
of uncoated TD-NiCr  and of TDoNiCr  protected by reference 10 N i - C r -  
AI--Si s lu r ry  coatings at 2100 F. The coating reduced weight l o s s  
by a fac tor  of t en  o r  more during t h i s  t i m e  period but metallo- 
graphic examination after 100 hours of  t e s t i n g  showed t h a t  coating 
f a i l u r e  was i m i n e n t a  

These 

In-house e f f o r t s  have been 

For example, contrary t o  the very s m a l l  weight gains or  

Clads of some of the more pro- 

Aside from turb ine  engine usage, dispersion strengthened m a t -  
e r ia ls  o f f e r  i n t e re s t ing  proper t ies  f o r  thermal radiative panels t o  
pro tec t  t h e  space s h u t t l e  during atmospheric reentry.  One hundred 
mission reuse capabi l i ty  i s  desired f o r  such protect ion systems with 
only minimum refurbishment, For t h i s  reason, low pressure oxidation 
s tudies  on TD-Ni and TD-NiCr  are a lso  i n  progress a t  Lewis Research 
Center t o  determine the extentoof chromium vaporization and/or oxida- 
t i o n  at temperatures near 2200 F and pressures near 10 mm. 

I 
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COATINGS FOR EIROMIUM ALtLOYS 

, 

Several s m a l l  e f f o r t s  are  current ly  under way t o  pro tec t  high 
s t rength chromium a l loys  from oxidation and nitrogen contamination 
( f o r  example, Refs, 11, 12 and l3I0 These e f f o r t s  are i n  the very 
ea r ly  stages of development, 
chromium/yttria mixtures arc3 showing promise for  providing good 
oxidation andonitrogen embrittlement protect ion for  a t  least 100 
hours a t  2100 

However4 plasma sprayed 

F i n  air (Ref. ll), 

Portions of the thermal protect ion system fo r  the space s h u t t l e  
w i l l  experience temperatures above the  useful  upper limits of dis- 
persion strengthened nickel  o r  saperalloys,  For th i s  reason coated 
columbium o r  tantalum heat shield systems me a lso  under considera- 
t ion .  
of  an ex is t ing  fused s lu r ry  s i l ic ide coating f ~ r  promising columbium 
al loys.  8uch an e f for t  w i l l  assure t h e  av%.i labi l i ty  of f u l l  sca le  
thermal protect ion system panels w i t $  uniform, reproducible pro- 
t e c t i v e  coatings; f o r  service t o  2400 A second area deals with 
compositional modification s tudies  t h a t  appear necessary t o  extend 
t h e  temperature and l i f e  l i m i t s  of  fused s l u r r y  coatings f o r  tanta-  

One area of  i n t e r e s t  deals with optimization and scale-up 

Fo 

l u m  al loys.  

Similar supporting s tudies  are underway at NASA Lewis. 
on compositional improvement w i l l  e m l o r e  t h e  poss ib i l i t y  of ex- 
tending coating l i f e  o r  increasing coating r e l i a b i l i t y  beyond t h e  
current s ta te-of- the-ar t ,  
evaluation and t e s t i n g  of  coated re f rac tory  metal systems with 
po ten t i a l  f o r  s h u t t l e  service.  Slow cycles ambient pressure tests; 
slow cycle, low pressure tests; mechanie%l property tests; and re- 
en t ry  simulation tests involving simultaneous var ia t ion  of  stress, 
temperature, and pressure w i l l  be conducted, 
a l loca ted  to evaluate vendor-developed coating systems ( f o r  e i t h e r  
tantalum o r  colum'bium a l loys)  which have demonstrated su f f i c i en t  
promise t o  warrant such t e s t i n g o  

Research 

A major e f f o r t  w i l l  involve independent 

Test time will a lso  be 

Aside from the s h u t t l e  application, Lewis has  supported 
coating development f o r  columbium and tantalum a l loys  f o r  po ten t i a l  
use i n  c r i t i c a l  p a r t s  of  advanced, high temperature aircraft gas 
turbine engines. 

Uncooled o r  p x r t i a l l y  cooled re f rac tory  metal vanes o f f e r  one 

While sheet m e t a l  vanes of 

F1 

way t o  minimize requirements f o r  cooling air  i n  fu ture  high per- 
formance aircraf't  gas tu rb ine  engines, 
tantalum and, columbium a l loys  can be eas i ly  fabr icated and whi$ 
they have enough s t rength to operate a t  temperatures near 2400 
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t h e i r  oxidation res i s tance  at these temperatures i s  poor. 
t o  1969, NASA supported two programs (Refs. 14 and 15) t o  develop 
coatings f o r  po ten t i a l  tantalum and columbium a l loy  vane materias, 
One of  the most promisfng coatings developed f o r  tantalum a l loy  T-222 
was designated MS-4. This coating was deposifxd as a 50 w/o W-20 
w/o Mo-15 w/o 9-15 w/o T i  s lur ry ,  it was then s in te red  and subsequently 
s i l i c ided .  
for  up t o  at least 800 hours at bo%h 1600 
mising oxidation r e s i s t w e e  f o r  u i  t o  200 hours a t  2400 
fueled Mach 0.8 burner r i g s  was observed fo r  t h i s  system. 

From 1965 

Extremely reliable cyc l ic  rpUrgace oxida-$ion res i s tance  
and 2400 F end very pro- 

F i n  je t  

The MS-4/2-222 system vas fur ther  p&hmted at  NASA Lewis i n  
Mach l, na tu ra l  gas burner r i g s  at  2200 F ( t h e  highest  temperature 
deemed p r a c t i c a l  at  t h e  time of  t e s t ing ) .  Standard NMA erosion 
bars  of  T-222, 4- by 1- by 114 inch th i ck  were used i n  these tests. 
Figure 4 shows the performance of t h i s  coating-substrate combination. 
!Iko f&.lures occurred sr”cer 170 hours of t e s t i n g  and two occurred 
at  50 and 100 hours, 
f a i l u r e a  Two survived 87 howrs and one 47 hours without f a i lu re .  
Mote t h a t  while t h e  longest lived specimens were removed *om tes t  
17 hours after t h e  fLrst white Ta20 was observed, t h e  next longest 
live& specimens were l e f t  i n  test  f& 87 and 90 hours, respectively.  

Three addi t ional  specimens were not tested t o  

The oxidation damage t h a t  took place i n  those 90 hours can be 
seen at t h e  l e f t  i n  f igure  5. 
50 hours l o s t  about one-half of i t s  width i n  t h e  f a i l u r e  area after 
a t o t a l  of 140 hours of tes t ing .  
ab le  t o  withstand the gas l o a a n g  sf approximately 3000 p s i  as w e l l  
as t h e  severe Mach 1 air quenches after each exposure cycle. 
ea r ly  f a i l u r e  locat ions were usual ly  i n  a zone about 1 inch f r g m  
t h e  specimen base having a measuged temperature of around 1800 
A lower temperature t es t  at  1800 F m a x i m u m  however, also showed 
failures i n  t he  same zone indicat ing that either stress or  other  
fac tors ,  r a the r  than taperatme, were t h e  primary cause of  such 
fa51ures * 

The specimen which first failed at 

However, t h i s  specimen was s t i l l  

The 

F. 

The photographs of specimens t h a t  have survived 187 hours o f  
tes t  - t h e  longest t es t  times used i n  t h i s  limited study - are 
presented at the r i g h t  i n  f igure  5. 
mens first failed a t  %TO hours but l i t t l e  v i sua l  dmage was seen at 
187 hours, 
region at  100 hours and at t h e  leading edge at  170 hours, 
note t h a t  t h e  la t ter  f a i l u r e s  are closer  t o  t h e  ho t t e s t  p a r t  of t h e  
specimen (about 1 i n ,  from t h e  t i p ) .  

Note t h a t  two of these speci- 

The specimen at the far r i g h t  failed i n  the cool base 
Also 

Further evaluafAon of t h e  NS-&/T-222 system was conducted i n  
reference 16, 
tangs cycl ic  furnace oxidation res%s.t&nee and a lso  developed some 

This e f f o r t  provided a second evaluation of t h e  sys- 



7 

mechanical property t e s t  data. 'Test specimens evaluated i n  t h i s  
program were coated by the  coating developer (Ref, 15) and were 
delivered fo r  evaluation, 
f igures  6 and 7. The cycl ic  furnace oxidation resis tance of the 
NS-4 coating was found t o  be l e s s  consistent andosomewhat poorer 
than observed by t h e  coating developer. 
were observed as  shown i n  par t  A of f igure 6, A t  1400 F, 200 F 
below the  temperature NASA had specif ied for  use i n  reference 15 
as a check fo r  s i l i c i d e  pest ,  a l l  oxidation t e s t  specimens f a i l e d  
with&n 2 t o  4 hours (Fig 6, par t  B)* 
2400 F, however, eliminated these ear ly  f a i lu re s ,  For example, 
after 10 hours i n  air  at 2400' F, a11 three specimens evaluated 
survived over 600 hours a t  1400° F (Fig. 6; pa r t  C )  e 

Representative r e s u l t s  a r e  presented i n  

A t  2400 Fa egrly faihures 

We-exposure at between 1600° - 

The bend d u c t i l i t y  of t he  T-222, as presented i n  f igure "(A), 
was not seriously affected by e i the r  t he  coat&ng process o r  by 
oxidation exposures. After 304 hours at  2400 f o r  example, the 
subsirate  could be bent  through an angle of 90 
-320 F without breaking. Wen g f t e r  500 hours at  1400 F (with 
10 hour8 of preoxidation at 2400 
at  -150 F. 

at  a temperature of 

F), a specimen could be bent 90 

Part  B of f igure  7 presents some creep data obtained at 8 ks i ,  
One specimen was  heat t rea ted  t o  the  coat- 2400' F, and 500 hours, 

ing cycle i n  high vacuum and then t e s t e d  i n  high vacuum; the  other 
was an as-coated specimen tested i n  air, From these data it appears 
that t h e  coating p a r t i a l l y  degraded t h e  mechanical propert ies  of the  
subsirate ,  
2400 F fo r  304 hours and s imi la r ly  creep tested developed oxidation 
f a i l u r e s  within 40 hours. 

For reasons not yet c lear ,  specimens first oxidized at 

I n  general, t h i s  study developed property data which show %'hat 
when t h e  coating remains i n t a c t ,  it prov5des r e l a t ive ly  good pro- 
t ec t ion  against  substrate  contamination by oxygen and the  attendant 
degradation of mechanical properties.  
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Figure 1. -Comparison of t ime to 
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